
Actions and ACTION Keyword Values 34-1

Chapter 34: Actions and ACTION Keyword

Values

Table files and UPD configuration files often include stanzas which we call
actions. We describe actions in this chapter.

34.1 Overview of Actions

An action is a construction that identifies a UPS or user-defined operation via
the ACTION keyword (defined in section 28.4 List of Supported Keywords),
and lists functions to perform, in addition to any internal processes, when the
operation is executed. An action can be called by a UPS command, a
user-defined UPS-style command, or by another action. An action stanza has
the format:

 ACTION=<VALUE>

 <function_1>([<argument_1>] [, <argument_2>] ...)

 <function_2>([<argument_1>] [, <argument_2>] ...)

 ...

As for all keyword values, the VALUE is not case-sensitive. Nor are the
functions, although some arguments are. The supported ACTION keyword
values include:

• strings that correspond to UPS commands

• chains and “unchains” (explained in section 34.3.2 “Unchains” as
Actions)

• user-defined strings handled by the Unknown Command Handler

The supported functions are listed in section 35.3 Function Descriptions.

34-2 Actions and ACTION Keyword Values

34.2 UPS Command Actions

34.2.1 UPS Commands as Actions

Most commonly, the ACTION keyword value is a string that corresponds to a
UPS command. The string is usually the command itself (minus the ups at
the front, if it is part of the command), e.g., SETUP, CONFIGURE,
DECLARE. The supported strings in this category include:

CONFIGURE and UNCONFIGURE

COPY

DECLARE and UNDECLARE

GET

MODIFY

SETUP and UNSETUP

START

STOP

TAILOR

The UPS commands that cannot have a corresponding action in a table file are:
ups flavor and ups help (because no table file can be associated with
them); ups depend, ups list, and ups verify (because they can
operate on more than one database); and ups exist, ups modify and
ups touch.

34.2.2 “Uncommands” as Actions

Several of the UPS commands have “uncommand” counterparts, namely
setup/unsetup, ups declare/undeclare, ups
configure/unconfigure. Generally, if the “uncommand” is expected to
undo everything that the original command did, and only that, then including
an ACTION=<UNCOMMAND> action in the table file is unnecessary.

Uncommands and Reversible Functions

If an “unaction” is not present, UPS will look for the corresponding
ACTION=<COMMAND>, and undo all the reversible functions that were
performed. In section 35.2 Reversible Functions we discuss reversible
functions. If the “uncommand” needs to do something other than the exact
reversal of the command, include an “unaction” for it (i.e.,
ACTION=<UNCOMMAND>) and specify the functions to execute.

Actions and ACTION Keyword Values 34-3

This works both ways. Say the original command is “uncommand” (e.g., ups
undeclare), and you have included ACTION=<UNCOMMAND> but not
ACTION=<COMMAND> in the table file. Then when you run “command”,
UPS will attempt to reverse all the functions listed under
ACTION=<UNCOMMAND>.

Uncommands and Script Execution

For the functions sourceOptCheck, sourceOptional,
sourceReqCheck, and sourceRequired, the “uncommand” will
execute an “unscript” in a similar way. You do not have to specify an
“unaction” in the table file as long as the scripts to source are in the same
directory and have matching script and “unscript” filenames (i.e.,
<scriptname> and un<scriptname>). This also works both ways, as
discussed above.

Here is an example. Say a CONFIGURE action specifies:
ACTION=CONFIGURE

sourceOptional(${UPS_UPS_DIR}/configure.${UPS_SHELL},UPS_ENV
)

When you run the ups unconfigure command, UPS first looks for
ACTION=UNCONFIGURE, as usual. Failing to find it, UPS next looks for
ACTION=CONFIGURE. Upon encountering the sourceOptional
function and seeing that it sources the configure.${UPS_SHELL}
script, UPS searches for the file unconfigure.${UPS_SHELL} in the
same directory (${UPS_UPS_DIR}), and sources it.

34.3 Chain Actions

34.3.1 Chains as Keyword Values

Chain names are allowable as ACTION keyword values. This includes any
predefined chain name (as listed in section 2.3.5 Chains: CURRENT, TEST,
DEVELOPMENT, OLD, NEW) or any user-defined chain name (e.g.,
MY_CHAIN). Chain actions are executed when a chain of the corresponding
name is declared to a product instance via the ups declare command.
For example, if you declare an instance as current, ups declare -c looks
for ACTION=CURRENT.

Sometimes a UPS command executes more than one action. For example, the
ups declare -c command executes both the CURRENT and DECLARE
actions, if they are present.

34-4 Actions and ACTION Keyword Values

34.3.2 “Unchains” as Actions

Similarly, when a chain is removed from an instance (which can happen with
either ups declare or ups undeclare), UPS looks for the
corresponding chain name preceded by the “UN” prefix (e.g., UNCURRENT,
UNTEST, UNMY_CHAIN).

The relationship between a chain action and its corresponding “unchain”
action (e.g., CURRENT and UNCURRENT) is the same as between
commands and “uncommands”, as described in section 34.2.2 “Uncommands”
as Actions. For example, if an “unchain” action is sought but not found, UPS
will then look for the corresponding ACTION=<CHAIN> and undo all the
reversible functions listed there.

34.4 The “Unknown Command” Handler

The unknown command handler effectively allows you to define a UPS-like
“unknown” command for use with a product. To define one, include in the
product’s table file an ACTION with a unique value of your choosing, e.g.,
ACTION=XYZ. The corresponding command will be ups xyz. The action
should contain one or more supported functions (listed in section 35.3
Function Descriptions), as usual. Here is an example of what the action may
look like:

ACTION=XYZ

 envSet(VARIABLE, value)

 sourceRequired(SCRIPT.csh, UPS_ENV_FLAG)

The command ups xyz is now available for you to use. Enough
information must of course be provided on the command line to locate the
table file containing the action, e.g.,:

% ups xyz [<options>] <product> [<version>]

When it is executed, the unknown command handler locates ACTION=XYZ in
the table file and executes the functions listed under it.

User-defined ACTION keyword values (e.g., XYZ) do not need to start with
underscore (_), as contrasted with user-defined keywords (see section 28.2
Keywords: Information Storage Format).

Examples

An example of the use of the unknown command handler can be found in the
table file for the product xemacs v20_4:

 ACTION=CONFIGURE

Actions and ACTION Keyword Values 34-5

 Execute(echo "Do a ’ups blessmail xemacs’ as root to
make mail work.",NO_UPS_ENV)

 ACTION=BLESSMAIL

 Execute(chgrp mail ${UPS_PROD_DIR}/lib/*/*/movemail,
NO_UPS_ENV)

 Execute(chmod 2755 ${UPS_PROD_DIR}/lib/*/*/movemail,
NO_UPS_ENV)

When the product instance is configured (via the first ups declare, or
manually via the ups configure command), an echo command prints
to screen an instruction to run the user-defined (“unknown”) command ups
blessmail. This command is handled by the unknown command handler.
It finds ACTION=BLESSMAIL and executes the functions associated with it.

UPD’s table file includes (at least) two actions using the unknown command
handler:

 action = installasroot

 Execute(${UPS_UPS_DIR}/setupautoupp localnode,
UPS_ENV)

 action = installprodserver

 Execute(${UPS_UPS_DIR}/setupautoupp productnode,
UPS_ENV)

If you’re installing on a local node, you’d run ups installasroot upd
after installing UPD; if you’re installing it on a server node, you’d run ups
installprodserver upd instead.

34.5 Actions Called by Other Actions

As mentioned in section 34.1 Overview of Actions, one action can execute
another in the same file. The called action must be assigned a unique value of
your choosing, e.g., ACTION=XYZ, and the calling action (or actions) must
include one of the following functions (shown for ACTION=XYZ):

exeActionRequired("xyz")

or

exeActionOptional("xyz")

These functions are described in sections 35.3.14 exeActionRequired and
35.3.13 exeActionOptional, respectively.

This technique is useful in cases where two different UPS operations require
overlapping functionality. For example, you may want one or more identical
functions to be performed when a product gets configured and when it gets
declared as current. The following example shows how to arrange this:

action = configure

34-6 Actions and ACTION Keyword Values

 <functions for configure>

 exeActionRequired("common")

action = current

 <functions for current>

 exeActionRequired("common")

action = common

 <functions common to both configure and current>

